Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; : e0008024, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661374

RESUMO

The hypothesis was tested that a kinetical flow equilibrium of uptake and efflux reactions is responsible for balancing the cellular zinc content. The experiments were done with the metal-resistant bacterium Cupriavidus metallidurans. In pulse-chase experiments, the cells were loaded with radioactive 65Zn and chased with the 100-fold concentration of non-radioactive zinc chloride. In parallel, the cells were loaded with isotope-enriched stable 67Zn and chased with non-enriched zinc to differentiate between zinc pools in the cell. The experiments demonstrated the existence of a kinetical flow equilibrium, resulting in a constant turnover of cell-bound zinc ions. The absence of the metal-binding cytoplasmic components, polyphosphate and glutathione, metal uptake, and metal efflux systems influenced the flow equilibrium. The experiments also revealed that not all zinc uptake and efflux systems are known in C. metallidurans. Cultivation of the cells under zinc-replete, zinc-, and zinc-magnesium-starvation conditions influenced zinc import and export rates. Here, magnesium starvation had a stronger influence compared to zinc starvation. Other metal cations, especially cobalt, affected the cellular zinc pools and zinc export during the chase reaction. In summary, the experiments with 65Zn and 67Zn demonstrated a constant turnover of cell-bound zinc. This indicated that simultaneously occurring import and export reactions in combination with cytoplasmic metal-binding components resulted in a kinetical flow equilibrium that was responsible for the adjustment of the cellular zinc content. IMPORTANCE: Understanding the biochemical action of a single enzyme or transport protein is the pre-requisite to obtain insight into its cellular function but this is only one half of the coin. The other side concerns the question of how central metabolic functions of a cell emerge from the interplay of different proteins and other macromolecules. This paper demonstrates that a flow equilibrium of zinc uptake and efflux reactions is at the core of cellular zinc homeostasis and identifies the most important contributors to this flow equilibrium: the uptake and efflux systems and metal-binding components of the cytoplasm.

2.
Appl Environ Microbiol ; 90(4): e0014624, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38557120

RESUMO

The metal-resistant bacterium Cupriavidus metallidurans occurs in metal-rich environments. In auriferous soils, the bacterium is challenged by a mixture of copper ions and gold complexes, which exert synergistic toxicity. The previously used, self-made Au(III) solution caused a synergistic toxicity of copper and gold that was based on the inhibition of the CupA-mediated efflux of cytoplasmic Cu(I) by Au(I) in this cellular compartment. In this publication, the response of the bacterium to gold and copper was investigated by using a commercially available Au(III) solution instead of the self-made solution. The new solution was five times more toxic than the previously used one. Increased toxicity was accompanied by greater accumulation of gold atoms by the cells. The contribution of copper resistance determinants to the commercially available Au(III) solution and synergistic gold-copper toxicity was studied using single- and multiple-deletion mutants. The commercially available Au(III) solution inhibited periplasmic Cu(I) homeostasis, which is required for the allocation of copper ions to copper-dependent proteins in this compartment. The presence of the gene for the periplasmic Cu(I) and Au(I) oxidase, CopA, decreased the cellular copper and gold content. Transcriptional reporter gene fusions showed that up-regulation of gig, encoding a minor contributor to copper resistance, was strictly glutathione dependent. Glutathione was also required to resist synergistic gold-copper toxicity. The new data indicated a second layer of synergistic copper-gold toxicity caused by the commercial Au(III) solution, inhibition of the periplasmic copper homeostasis in addition to the cytoplasmic one.IMPORTANCEWhen living in auriferous soils, Cupriavidus metallidurans is not only confronted with synergistic toxicity of copper ions and gold complexes but also by different gold species. A previously used gold solution made by using aqua regia resulted in the formation of periplasmic gold nanoparticles, and the cells were protected against gold toxicity by the periplasmic Cu(I) and Au(I) oxidase CopA. To understand the role of different gold species in the environment, another Au(III) solution was commercially acquired. This compound was more toxic due to a higher accumulation of gold atoms by the cells and inhibition of periplasmic Cu(I) homeostasis. Thus, the geo-biochemical conditions might influence Au(III) speciation. The resulting Au(III) species may subsequently interact in different ways with C. metallidurans and its copper homeostasis system in the cytoplasm and periplasm. This study reveals that the geochemical conditions may decide whether bacteria are able to form gold nanoparticles or not.


Assuntos
Cupriavidus , Nanopartículas Metálicas , Cobre/metabolismo , Ouro/toxicidade , Ouro/metabolismo , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Cupriavidus/genética , Cupriavidus/metabolismo , Proteínas de Bactérias/metabolismo , Íons/metabolismo , Solo , Glutationa/metabolismo , Oxirredutases/metabolismo
3.
J Bacteriol ; 206(2): e0039523, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38226602

RESUMO

In Cupriavidus metallidurans and other bacteria, biosynthesis of the essential biochemical cofactor tetrahydrofolate (THF) initiates from guanosine triphosphate (GTP). This step is catalyzed by FolE_I-type GTP cyclohydrolases, which are either zinc-dependent FolE_IA-type or metal-promiscuous FolE_IB-type enzymes. As THF is also essential for GTP biosynthesis, GTP and THF synthesis form a cooperative cycle, which may be influenced by the cellular homeostasis of zinc and other metal cations. Metal-resistant C. metallidurans harbors one FolE_IA-type and two FolE_IB-type enzymes. All three proteins were produced in Escherichia coli. FolE_IA was indeed zinc dependent and the two FolE_IB enzymes metal-promiscuous GTP cyclohydrolases in vitro, the latter, for example, functioning with iron, manganese, or cobalt. Single and double mutants of C. metallidurans with deletions in the folE_I genes were constructed to analyze the contribution of the individual FolE_I-type enzymes under various conditions. FolE_IA was required in the presence of cadmium, hydrogen peroxide, metal chelators, and under general metal starvation conditions. FolE_IB1 was important when zinc uptake was impaired in cells without the zinc importer ZupT (ZIP family) and in the presence of trimethoprim, an inhibitor of THF biosynthesis. FolE_IB2 was needed under conditions of low zinc and cobalt but high magnesium availability. Together, these data demonstrate that C. metallidurans requires all three enzymes to allow efficient growth under a variety of conditions.IMPORTANCETetrahydrofolate (THF) is an important cofactor in microbial biochemistry. This "Achilles heel" of metabolism has been exploited by anti-metabolites and antibiotics such as sulfonamide and trimethoprim. Since THF is essential for the synthesis of guanosine triphosphate (GTP) and THF biosynthesis starts from GTP, synthesis of both compounds forms a cooperative cycle. The first step of THF synthesis by GTP cyclohydrolases (FolEs) is metal dependent and catalyzed by zinc- or metal-promiscuous enzymes, so that the cooperative THF and GTP synthesis cycle may be influenced by the homeostasis of several metal cations, especially that of zinc. The metal-resistant bacterium C. metallidurans needs three FolEs to grow in environments with both high and low zinc and cadmium content. Consequently, bacterial metal homeostasis is required to guarantee THF biosynthesis.


Assuntos
Cádmio , Cupriavidus , Cádmio/metabolismo , Guanosina Trifosfato/metabolismo , Metais/metabolismo , Zinco/metabolismo , Cupriavidus/genética , Cupriavidus/metabolismo , Cobalto/metabolismo , Trimetoprima , Cátions/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Microorganisms ; 11(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375020

RESUMO

Here a multiple heavy metal and antibiotic resistant bacterium Cupriavidus necator C39 (C. necator C39) was isolated from a Gold-Copper mine in Zijin, Fujian, China. C. necator C39 was able to tolerate intermediate concentrations of heavy metal(loid)s in Tris Minimal (TMM) Medium (Cu(II) 2 mM, Zn(II) 2 mM, Ni(II) 0.2 mM, Au(III) 70 µM and As(III) 2.5 mM). In addition, high resistance to multiple antibiotics was experimentally observed. Moreover, strain C39 was able to grow on TMM medium containing aromatic compounds such as benzoate, phenol, indole, p-hydroxybenzoic acid or phloroglucinol anhydrous as the sole carbon sources. The complete genome of this strain revealed 2 circular chromosomes and 1 plasmid, and showed the closest type strain is C. necator N-1T based on Genome BLAST Distance Phylogeny. The arsenic-resistance (ars) cluster GST-arsR-arsICBR-yciI and a scattered gene encoding the putative arsenite efflux pump ArsB were identified on the genome of strain C39, which thereby may provide the bacterium a robust capability for arsenic resistance. Genes encoding multidrug resistance efflux pump may confer high antibiotic resistance to strain C39. Key genes encoding functions in degradation pathways of benzene compounds, including benzoate, phenol, benzamide, catechol, 3- or 4-fluorobenzoate, 3- or 4-hydroxybenzoate and 3,4-dihydroxybenzoate, indicated its potential for degrading those benzene compounds.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37327059

RESUMO

Mangrove bacteria largely compose the microbial community of the coastal ecosystem and are directly associated with nutrient cycling. In the present study, 12 Gram-negative and motile strains were isolated from a mangrove wetland in Zhangzhou, China. Pairwise comparisons (based on 16S rRNA gene sequences) and phylogenetic analysis indicated that these 12 strains belong to the genus Shewanella. The 16S rRNA gene sequence similarities among the 12 Shewanella strains and their related type strains ranged from 98.8 to 99.8 %, but they still could not be considered as known species. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the 12 strains and their related type strains were below the cut-off values (ANI 95-96% and dDDH 70 %) for prokaryotic species delineation. The DNA G+C contents of the present study strains ranged from 44.4 to 53.8 %. The predominant menaquinone present in all strains was MK-7. The present study strains (except FJAT-53532T) also contained ubiquinones (Q-8 and Q-7). The polar lipid phosphatidylglycerol and fatty acid iso-C15 : 0 was noticed in all strains. Based on phenotypic, chemotaxonomic, phylogenetic and genomic comparisons, we propose that these 12 strains represent 10 novel species within the genus Shewanella, with the names Shewanella psychrotolerans sp. nov. (FJAT-53749T=GDMCC 1.2398T=KCTC 82649T), Shewanella zhangzhouensis sp. nov. (FJAT-52072T=MCCC 1K05363T=KCTC 82447T), Shewanella rhizosphaerae sp. nov. (FJAT-53764T=GDMCC 1.2349T=KCTC 82648T), Shewanella mesophila sp. nov. (FJAT-53870T=GDMCC 1.2346T= KCTC 82640T), Shewanella halotolerans sp. nov. (FJAT-53555T=GDMCC 1.2344T=KCTC 82645T), Shewanella aegiceratis sp. nov. (FJAT-53532T=GDMCC 1.2343T=KCTC 82644T), Shewanella alkalitolerans sp. nov. (FJAT-54031T=GDMCC 1.2347T=KCTC 82642T), Shewanella spartinae sp. nov. (FJAT-53681T=GDMCC 1.2345T=KCTC 82641T), Shewanella acanthi sp. nov. (FJAT-51860T=GDMCC 1.2342T=KCTC 82650T) and Shewanella mangrovisoli sp. nov. (FJAT-51754T=GDMCC 1.2341T= KCTC 82647T).


Assuntos
Ácidos Graxos , Shewanella , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Ecossistema , Áreas Alagadas , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Genômica
6.
Appl Environ Microbiol ; 89(6): e0056723, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37191542

RESUMO

The metal-resistant bacterium Cupriavidus metallidurans uses its copper resistance components to survive the synergistic toxicity of copper ions and gold complexes in auriferous soils. The cup, cop, cus, and gig determinants encode as central component the Cu(I)-exporting PIB1-type ATPase CupA, the periplasmic Cu(I)-oxidase CopA, the transenvelope efflux system CusCBA, and the Gig system with unknown function, respectively. The interplay of these systems with each other and with glutathione (GSH) was analyzed. Copper resistance in single and multiple mutants up to the quintuple mutant was characterized in dose-response curves, Live/Dead-staining, and atomic copper and glutathione content of the cells. The regulation of the cus and gig determinants was studied using reporter gene fusions and in case of gig also RT-PCR studies, which verified the operon structure of gigPABT. All five systems contributed to copper resistance in the order of importance: Cup, Cop, Cus, GSH, and Gig. Only Cup was able to increase copper resistance of the Δcop Δcup Δcus Δgig ΔgshA quintuple mutant but the other systems were required to increase copper resistance of the Δcop Δcus Δgig ΔgshA quadruple mutant to the parent level. Removal of the Cop system resulted in a clear decrease of copper resistance in most strain backgrounds. Cus cooperated with and partially substituted Cop. Gig and GSH cooperated with Cop, Cus, and Cup. Copper resistance is thus the result of an interplay of many systems. IMPORTANCE The ability of bacteria to maintain homeostasis of the essential-but-toxic "Janus"-faced element copper is important for their survival in many natural environments but also in case of pathogenic bacteria in their respective host. The most important contributors to copper homeostasis have been identified in the last decades and comprise PIB1-type ATPases, periplasmic copper- and oxygen-dependent copper oxidases, transenvelope efflux systems, and glutathione; however, it is not known how all these players interact. This publication investigates this interplay and describes copper homeostasis as a trait emerging from a network of interacting resistance systems.


Assuntos
Proteínas de Bactérias , Cupriavidus , Proteínas de Bactérias/genética , Cupriavidus/genética , Ouro , Genes Reporter
7.
J Hazard Mater ; 443(Pt A): 130184, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36270189

RESUMO

Bacterial adaptation to extreme environments is often mediated by horizontal gene transfer (HGT) via genetic mobile elements. Nevertheless, phage-mediated HGT conferring bacterial arsenic resistance determinants has rarely been investigated. In this study, a highly arsenite and antimonite resistant bacterium, Citrobacter portucalensis strain Sb-2, was isolated, and genome analysis showed that several putative arsenite and antimonite resistance determinants were flanked or embedded in prophages. Furthermore, an active bacteriophage carrying one of the ars clusters (arsRDABC arsR-yraQ/arsP) was obtained and sequenced. These genes encoding putative arsenic resistance determinants were induced by arsenic and antimony as demonstrated by RT-qPCR, and one gene arsP/yraQ of the ars cluster was shown to give resistance to MAs(III) and Rox(III), thereby showing function. Here, we were able to directly show that these phage-mediated arsenic and antimony resistances play a significant role in adapting to As- and Sb-contaminated environments. In addition, we demonstrate that this phage is responsible for conferring arsenic and antimony resistances to C. portucalensis strain Sb-2.


Assuntos
Arsênio , Arsenitos , Bacteriófagos , Metaloides , Antimônio/toxicidade , Bacteriófagos/genética , Citrobacter/genética
8.
ACS Biomater Sci Eng ; 8(10): 4327-4340, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36174215

RESUMO

Metal ions are important effectors of protein and cell functions. Here, polyelectrolyte multilayers (PEMs) made of chitosan (Chi) and alginate (Alg) were doped with different metal ions (Ca2+, Co2+, Cu2+, and Fe3+), which can form bonds with their functional groups. Ca2+ and Fe3+ ions can be deposited in PEM at higher quantities resulting in more positive ζ potentials and also higher water contact angles in the case of Fe3+. An interesting finding was that the exposure of PEM to metal ions decreases the elastic modulus of PEM. Fourier transformed infrared (FTIR) spectroscopy of multilayers provides evidence of interaction of metal ions with the carboxylic groups of Alg but not for hydroxyl and amino groups. The observed changes in wetting and surface potential are partly related to the increased adhesion and proliferation of multipotent C3H10T1/2 fibroblasts in contrast to plain nonadhesive [Chi/Alg] multilayers. Specifically, PEMs doped with Cu2+ and Fe3+ ions greatly promote cell attachment and adipogenic differentiation, which indicates that changes in not only surface properties but also the bioactivity of metal ions play an important role. In conclusion, metal ion-doped multilayer coatings made of alginate and chitosan can promote the differentiation of multipotent cells on implants without the use of other morphogens like growth factors.


Assuntos
Alginatos , Quitosana , Adipogenia , Alginatos/química , Alginatos/farmacologia , Quitosana/farmacologia , Íons , Polieletrólitos/química , Polieletrólitos/farmacologia , Células-Tronco , Água/química
9.
Appl Environ Microbiol ; 88(9): e0031222, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35435714

RESUMO

The Gram-positive bacterium Paenibacillus taichungensis NC1 was isolated from the Zijin gold-copper mine and shown to display high resistance to arsenic (MICs of 10 mM for arsenite in minimal medium). Genome sequencing indicated the presence of a number of potential arsenic resistance determinants in NC1. Global transcriptomic analysis under arsenic stress showed that NC1 not only directly upregulated genes in an arsenic resistance operon but also responded to arsenic toxicity by increasing the expression of genes encoding antioxidant functions, such as cat, perR, and gpx. In addition, two highly expressed genes, marR and arsV, encoding a putative flavin-dependent monooxygenase and located adjacent to the ars resistance operon, were highly induced by As(III) exposure and conferred resistance to arsenic and antimony compounds. Interestingly, the zinc scarcity response was induced under exposure to high concentrations of arsenite, and genes responsible for iron uptake were downregulated, possibly to cope with oxidative stress associated with As toxicity. IMPORTANCE Microbes have the ability to adapt and respond to a variety of conditions. To better understand these processes, we isolated the arsenic-resistant Gram-positive bacterium Paenibacillus taichungensis NC1 from a gold-copper mine. The transcriptome responding to arsenite exposure showed induction of not only genes encoding arsenic resistance determinants but also genes involved in the zinc scarcity response. In addition, many genes encoding functions involved in iron uptake were downregulated. These results help to understand how bacteria integrate specific responses to arsenite exposure with broader physiological responses.


Assuntos
Arsênio , Arsenitos , Arsênio/metabolismo , Arsênio/toxicidade , Arsenitos/metabolismo , Arsenitos/toxicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobre , Ouro , Ferro , Óperon , Paenibacillus , Zinco
10.
Metallomics ; 14(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35179212

RESUMO

The bioavailability of trace elements in the course of evolution had an essential influence on the emergence of life itself. This is reflected in the co-evolution between eukaryotes and prokaryotes. In this study, the influence and cellular distribution of bioelements during phagocytosis at the host-pathogen interface were investigated using high-resolution nanoscale secondary ion mass spectrometry (NanoSIMS) and quantitative inductively coupled plasma mass spectrometry. In the eukaryotic murine macrophages (RAW 264.7 cell line), the cellular Fe/Zn ratio was found to be balanced, whereas the dominance of iron in the prokaryotic cells of the pathogen Salmonella enterica Serovar Enteritidis was ∼90% compared to zinc. This confirms the evolutionary increased zinc requirement of the eukaryotic animal cell. Using NanoSIMS, the Cs+ primary ion source allowed high spatial resolution mapping of cell morphology down to the subcellular level. At a comparable resolution, several low-abundant trace elements could be mapped during phagocytosis with a RF plasma O- primary ion source. An enrichment of copper and nickel could be detected in the prokaryotic cells. Surprisingly, an accumulation of cobalt in the area of the nuclear envelope was observed, indicating an interesting but still unknown distribution of this trace element in murine macrophages.


Assuntos
Oligoelementos , Animais , Cobre/análise , Camundongos , Fagocitose , Espectrometria de Massa de Íon Secundário , Oligoelementos/metabolismo , Zinco/análise
11.
Environ Res ; 210: 112910, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35151659

RESUMO

The biorecovery of gold (Au) by microbial reduction has received increasing attention, however, the biomolecules involved and the mechanisms by which they operate to produce Au nanoparticles have been not resolved. Here we report that Burkholderia contaminans ZCC is capable of reduction of Au(III) to Au nanoparticles on the cell surface. Exposure of B. contaminans ZCC to Au(III) led to significant changes in the functional group of cell proteins, with approximately 11.1% of the (C-C/C-H) bonds being converted to CO (8.1%) and C-OH (3.0%) bonds and 29.4% of the CO bonds being converted to (C-OH/C-O-C/P-O-C) bonds, respectively. In response to Au(III), B. contaminans ZCC also displayed the ability of extracellular electron transfer (EET) via membrane proteins and could produce reduced riboflavin as verified by electrochemical and liquid chromatography-mass spectrometric results, but did not do so without Au(III) being present. Addition of exogenous reduced riboflavin to the medium suggested that B. contaminans ZCC could utilize indirect EET via riboflavin to enhance the rate of reduction of Au(III). Transcriptional analysis of the riboflavin genes (ribBDEFH) supported the view of the importance of riboflavin in the reduction of Au(III) and its importance in the biorecovery of gold.


Assuntos
Ouro , Nanopartículas Metálicas , Burkholderia , Elétrons , Riboflavina
12.
Methods Mol Biol ; 2433: 65-73, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985737

RESUMO

Cell-free extracts have been researched and continuously streamlined for around 50 years. It is believed that these extracts work best when routinely obtained from exponentially growing cells to capture the most active translation system. Here we report on an active cell-free extract derived from E. coli A19 that was harvested under nongrowing, stressed conditions. Although this process is based on the conventional routine process for the production of S30-extracts, our process is less labor intensive and reduces variability between extracts.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Extratos Celulares , Sistema Livre de Células , Escherichia coli/genética , Biossíntese de Proteínas
13.
Appl Environ Microbiol ; 88(4): e0204821, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34910578

RESUMO

The genome of the metal-resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans strain CH34 contains horizontally acquired plasmids and genomic islands. Metal-resistance determinants on the two plasmids may exert genetic dominance over other related determinants. To investigate whether these recessive determinants can be activated in the absence of the dominant ones, the transcriptome of the highly zinc-sensitive deletion mutant Δe4 (ΔcadA ΔzntA ΔdmeF ΔfieF) of the plasmid-free parent AE104 was characterized using gene arrays. As a consequence of some unexpected results, close examination by PCR and genomic resequencing of strains CH34, AE104, Δe4, and others revealed that the genomic islands CMGI2, 3, 4, D, and E, but no other islands or recessive determinants, were deleted in some of these strains. Provided that wild-type CH34 was kept under alternating zinc and nickel selection pressure, no comparable deletions occurred. All current data suggest that genes were actually deleted and were not, as surmised previously, silenced in the respective strain. As a consequence, a cured database was compiled from the newly generated and previously published gene array data. An analysis of data from this database indicated that some genes of recessive, no longer needed determinants were nevertheless expressed and upregulated. Their products may interact with those of the dominant determinants to mediate a mosaic phenotype. The ability to contribute to such a mosaic phenotype may prevent deletion of the recessive determinant. The data suggest that the bacterium actively modifies its genome to deal with metal stress and at the same time ensures metal homeostasis. IMPORTANCE In their natural environment, bacteria continually acquire genes by horizontal gene transfer, and newly acquired determinants may become dominant over related ones already present in the host genome. When a bacterium is taken into laboratory culture, it is isolated from the horizontal gene transfer network. It can no longer gain genes but instead may lose them. This phenomenon was indeed observed in Cupriavidus metallidurans for the loss key metal resistance determinants when no selection pressure was kept continuously. However, some recessive metal resistance determinants were maintained in the genome. It is proposed that they might contribute some accessory genes to related dominant resistance determinants, for instance periplasmic metal-binding proteins or two-component regulatory systems. Alternatively, they may remain in the genome only because their DNA serves as a scaffold for the nucleoid. Using C. metallidurans as an example, this study sheds light on the fate and function of horizontally acquired genes in bacteria.


Assuntos
Cupriavidus , Ilhas Genômicas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cupriavidus/genética , Cupriavidus/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidrogênio/metabolismo , Oxirredução
14.
Soft Matter ; 17(36): 8394-8410, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550141

RESUMO

Polyelectrolyte multilayers (PEMs) consisting of the polysaccharides hyaluronic acid (HA) as the polyanion and chitosan (Chi) as the polycation were prepared with layer-by-layer technique (LbL). The [Chi/HA]5 multilayers were exposed to solutions of metal ions (Ca2+, Co2+, Cu2+ and Fe3+). Binding of metal ions to [Chi/HA]5 multilayers by the formation of complexes with functional groups of polysaccharides modulates their physical properties and the bioactivity of PEMs with regard to the adhesion and function of multipotent murine C3H10T1/2 embryonic fibroblasts. Characterization of multilayer formation and surface properties using different analytical methods demonstrates changes in the wetting, surface potential and mechanical properties of multilayers depending on the concentration and type of metal ion. Most interestingly, it is observed that Fe3+ metal ions greatly promote adhesion and spreading of C3H10T1/2 cells on the low adhesive [Chi/HA]5 PEM system. The application of intermediate concentrations of Cu2+, Ca2+ and Co2+ as well as low concentrations of Fe3+ to PEMs also results in increased cell spreading. Moreover, it can be shown that complex formation of PEMs with Cu2+ and Fe3+ ions leads to increased metabolic activity in cells after 24 h and induces cell differentiation towards adipocytes in the absence of any additional adipogenic media supplements. Overall, complex formation of [Chi/HA]5 PEM with metal ions like Cu2+ and Fe3+ represents an interesting and cheap alternative to the use of growth factors for making cell-adhesive coatings and guiding stem cell differentiation on implants and scaffolds to regenerate connective-type of tissues.


Assuntos
Quitosana , Ácido Hialurônico , Animais , Adesão Celular , Diferenciação Celular , Fibroblastos , Íons , Camundongos , Propriedades de Superfície
15.
J Bacteriol ; 203(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33685972

RESUMO

In the metallophilic beta-proteobacterium Cupriavidus metallidurans, the plasmid-encoded Czc metal homeostasis system adjusts the periplasmic zinc, cobalt and cadmium concentration, which influences subsequent uptake of these metals into the cytoplasm. Behind this shield, the PIB2-type APTase ZntA is responsible for removal of surplus cytoplasmic zinc ions, thereby providing a second level of defense against toxic zinc concentrations. ZntA is the counterpart to the Zur-regulated zinc uptake system ZupT and other import systems; however, the regulator of zntA expression was unknown. The chromid-encoded zntA gene is adjacent to the genes czcI2C2B2', which are located on the complementary DNA strand and transcribed from a common promoter region. These genes encode homologs of plasmid pMOL30-encoded Czc components. Candidates for possible regulators of zntA were identified and subsequently tested: CzcI, CzcI2, and the MerR-type gene products of the locus tags Rmet_2302, Rmet_0102, Rmet_3456. This led to the identification of Rmet_3456 as ZntR, the main regulator of zntA expression. Moreover, both CzcIs decreased Czc-mediated metal resistance, possibly to avoid "over-excretion" of periplasmic zinc ions, which could result in zinc starvation due to diminished zinc uptake into the cytoplasm. Rmet_2302 was identified as CadR, the regulator of the cadA gene for an important cadmium-exporting PIB2-type ATPase, which provides another system for removal of cytoplasmic zinc and cadmium. Rmet_0102 was not involved in regulation of the metal resistance systems examined here. Thus, ZntR forms a complex regulatory network with CadR, Zur and the CzcIs. Moreover, these discriminating regulatory proteins assign the efflux systems to their particular function.ImportanceZinc is an essential metal for numerous organisms from humans to bacteria. The transportome of zinc uptake and efflux systems controls the overall cellular composition and zinc content in a double feed-back loop. Zinc starvation mediates, via the Zur regulator, an up-regulation of the zinc import capacity via the ZIP-type zinc importer ZupT and an amplification of zinc storage capacity, which together raise the cellular zinc content again. On the other hand, an increasing zinc content leads to ZntR-mediated up-regulation of the zinc efflux system ZntA, which decreases the zinc content. Together, the Zur regulon components and ZntR/ZntA balance the cellular zinc content under both high external zinc concentrations and zinc starvation conditions.

16.
Ecotoxicol Environ Saf ; 211: 111914, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33454593

RESUMO

Bioremediation of Cd contaminated environments can be assisted by plant-growth-promoting bacteria (PGPB) enabling plant growth in these sites. Here a gram-negative Burkholderia contaminans ZCC was isolated from mining soil at a copper-gold mine. When exposed to Cd(II), ZCC displayed high Cd resistance and the minimal inhibitory concentration was 7 mM in LB medium. Complete genome analysis uncovered B. contaminans ZCC contained 3 chromosomes and 2 plasmids. One of these plasmids was shown to contain a multitude of heavy metal resistance determinants including genes encoding a putative Cd-translocating PIB-type ATPase and an RND-type related to the Czc-system. These additional heavy metal resistance determinants are likely responsible for the increased resistance to Cd(II) and other heavy metals in comparison to other strains of B. contaminans. B. contaminans ZCC also displayed PGPB traits such as 1-aminocyclopropane-1-carboxylate deaminase activity, siderophore production, organic and inorganic phosphate solubilization and indole acetic acid production. Moreover, the properties and Cd(II) binding characteristics of extracellular polymeric substances was investigated. ZCC was able to induce extracellular polymeric substances production in response to Cd and was shown to be chemically coordinated to Cd(II). It could promote the growth of soybean in the presence of elevated concentrations of Cd(II). This work will help to better understand processes important in bioremediation of Cd-contaminated environment.


Assuntos
Adaptação Fisiológica/fisiologia , Burkholderia/fisiologia , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Cádmio/metabolismo , Ácidos Indolacéticos , Metais Pesados/análise , Mineração , Desenvolvimento Vegetal , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , /metabolismo
17.
Front Bioeng Biotechnol ; 8: 584178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195146

RESUMO

In vitro systems are ideal setups to investigate the basic principles of biochemical reactions and subsequently the bricks of life. Cell-free protein synthesis (CFPS) systems mimic the transcription and translation processes of whole cells in a controlled environment and allow the detailed study of single components and reaction networks. In silico studies of CFPS systems help us to understand interactions and to identify limitations and bottlenecks in those systems. Black-box models laid the foundation for understanding the production and degradation dynamics of macromolecule components such as mRNA, ribosomes, and proteins. Subsequently, more sophisticated models revealed shortages in steps such as translation initiation and tRNA supply and helped to partially overcome these limitations. Currently, the scope of CFPS modeling has broadened to various applications, ranging from the screening of kinetic parameters to the stochastic analysis of liposome-encapsulated CFPS systems and the assessment of energy supply properties in combination with flux balance analysis (FBA).

18.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33067196

RESUMO

Artificial laboratory evolution was used to produce mutant strains of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) able to survive on antimicrobial metallic copper surfaces. These mutants were 12- and 60-fold less susceptible to the copper-mediated contact killing process than their respective parent strains. Growth levels of the mutant and its parent in complex growth medium were similar. Tolerance to copper ions of the mutants was unchanged. The mutant phenotype remained stable over about 250 generations under nonstress conditions. The mutants and their respective parental strains accumulated copper released from the metallic surfaces to similar extents. Nevertheless, only the parental strains succumbed to copper stress when challenged on metallic copper surfaces, suffering complete destruction of the cell structure. Whole-genome sequencing and global transcriptome analysis were used to decipher the genetic alterations in the mutant strains; however, these results did not explain the copper-tolerance phenotypes on the systemic level. Instead, the mutants shared features with those of stressed bacterial subpopulations entering the early or "shallow" persister state. In contrast to the canonical persister state, however, the ability to survive on solid copper surfaces was adopted by the majority of the mutant strain population. This indicated that application of solid copper surfaces in hospitals and elsewhere has to be accompanied by strict cleaning regimens to keep the copper surfaces active and prevent evolution of tolerant mutant strains.IMPORTANCE Microbes are rapidly killed on solid copper surfaces by contact killing. Copper surfaces thus have an important role to play in preventing the spread of nosocomial infections. Bacteria adapt to challenging natural and clinical environments through evolutionary processes, for instance, by acquisition of beneficial spontaneous mutations. We wish to address the question of whether mutants can be selected that have evolved to survive contact killing on solid copper surfaces. We isolated such mutants from Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) by artificial laboratory evolution. The ability to survive on solid copper surfaces was a stable phenotype of the mutant population and not restricted to a small subpopulation. As a consequence, standard operation procedures with strict hygienic measures are extremely important to prevent the emergence and spread of copper-surface-tolerant persister-like bacterial strains if copper surfaces are to be sustainably used to limit the spread of pathogenic bacteria, e.g., to curb nosocomial infections.


Assuntos
Evolução Biológica , Cobre/farmacologia , Escherichia coli/genética , Staphylococcus aureus Resistente à Meticilina/genética , Seleção Genética , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos
19.
Front Microbiol ; 11: 47, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117100

RESUMO

The highly heavy metal resistant strain Cupriavidus metallidurans BS1 was isolated from the Zijin gold-copper mine in China. This was of particular interest since the extensively studied, closely related strain, C. metallidurans CH34 was shown to not be only highly heavy metal resistant but also able to reduce metal complexes and biomineralizing them into metallic nanoparticles including gold nanoparticles. After isolation, C. metallidurans BS1 was characterized and complete genome sequenced using PacBio and compared to CH34. Many heavy metal resistance determinants were identified and shown to have wide-ranging similarities to those of CH34. However, both BS1 and CH34 displayed extensive genome plasticity, probably responsible for significant differences between those strains. BS1 was shown to contain three prophages, not present in CH34, that appear intact and might be responsible for shifting major heavy metal resistance determinants from plasmid to chromid (CHR2) in C. metallidurans BS1. Surprisingly, the single plasmid - pBS1 (364.4 kbp) of BS1 contains only a single heavy metal resistance determinant, the czc determinant representing RND-type efflux system conferring resistance to cobalt, zinc and cadmium, shown here to be highly similar to that determinant located on pMOL30 in C. metallidurans CH34. However, in BS1 another homologous czc determinant was identified on the chromid, most similar to the czc determinant from pMOL30 in CH34. Other heavy metal resistance determinants such as cnr and chr determinants, located on megaplasmid pMOL28 in CH34, were shown to be adjacent to the czc determinant on chromid (CHR2) in BS1. Additionally, other heavy metal resistance determinants such as pbr, cop, sil, and ars were located on the chromid (CHR2) and not on pBS1 in BS1. A diverse range of genomic rearrangements occurred in this strain, isolated from a habitat of constant exposure to high concentrations of copper, gold and other heavy metals. In contrast, the megaplasmid in BS1 contains mostly genes encoding unknown functions, thus might be more of an evolutionary playground where useful genes could be acquired by horizontal gene transfer and possibly reshuffled to help C. metallidurans BS1 withstand the intense pressure of extreme concentrations of heavy metals in its environment.

20.
J Bacteriol ; 201(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31109989

RESUMO

The Zur regulon is central to zinc homeostasis in the zinc-resistant bacterium Cupriavidus metallidurans It comprises the transcription regulator Zur, the zinc importer ZupT, and three members of the COG0523 family of metal-chaperoning G3E-type GTPases, annotated as CobW1, CobW2, and CobW3. The operon structures of the zur and cobW1 loci were determined. To analyze the interplay between the Zur regulon components and metal resistance, deletion mutants were constructed from the wild-type strain CH34 and various other strains. The Zur regulon components interacted with the plasmid-encoded and chromosomally encoded metal resistance factors to acquire metals from complexes of EDTA and for homeostasis of and resistance to zinc, nickel, cobalt, and cadmium. The three G3E-type GTPases were characterized in more detail. CobW1 bound only 1 Zn atom per mol of protein with a stability constant slightly above that of 2-carboxy-2'-hydroxy-5'-sulfoformazylbenzene (Zincon) and an additional 0.5 Zn with low affinity. The CobW1 system was necessary to obtain metals from EDTA complexes. The GTPase CobW2 is a zinc storage compound and bound 0.5 to 1.5 Zn atoms tightly and up to 6 more with lower affinity. The presence of MgGTP unfolded the protein partially. CobW3 had no GTPase activity and equilibrated metal import by ZupT with that of the other metal transport systems. It sequestered 8 Zn atoms per mol with decreasing affinity. The three CobWs bound to the metal-dependent protein FolEIB2, which is encoded directly downstream of cobW1 This demonstrated an important contribution of the Zur regulon components to metal homeostasis in C. metalliduransIMPORTANCE Zinc is an important transition metal cation and is present as an essential component in many enzymes, such as RNA polymerase. As with other transition metals, zinc is also toxic at higher concentrations so that living cells have to maintain strict control of their zinc homeostasis. Members of the COG0523 family of metal-chaperoning GE3-type GTPases exist in archaea, bacteria, and eucaryotes, including humans, and they may be involved in delivery of zinc to thousands of different proteins. We used a combination of molecular, physiological, and biochemical methods to demonstrate the important but diverse functions of COG0523 proteins in C. metallidurans, which are produced as part of the Zur-controlled zinc starvation response in this bacterium.


Assuntos
Proteínas de Bactérias/metabolismo , Cupriavidus/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Metais/metabolismo , Regulon , Proteínas de Bactérias/genética , Cádmio/metabolismo , Cupriavidus/genética , GTP Fosfo-Hidrolases/genética , Regulação Bacteriana da Expressão Gênica , Homeostase , Níquel/metabolismo , Óperon , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...